skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khurana, Mohit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photonic integrated circuits (PICs) are vital for developing affordable, high-performance optoelectronic devices that can be manufactured at an industrial scale, driving innovation and efficiency in various applications. Optical loss of modes in thin film waveguides and devices is a critical measure of their performance. Thin film growth, lithography, masking, and etching processes are imperfect processes that introduce significant sidewall and top-surface roughness and cause dominating optical losses in waveguides and photonic structures. This roughness, as perturbations couple light from guided to far-field radiation modes, leads to scattering losses that can be estimated from theoretical models. Typically, with UV-based lithography, sidewall roughness is significantly larger than wafer-top surface roughness. Atomic force microscopy (AFM) imaging measurement gives a 3D and high-resolution roughness profile, but the measurement is inconvenient, costly, and unscalable for large-scale PICs and at wafer-scale. Here, we evaluate the sidewall roughness profile based on 2D high-resolution scanning electron microscope (SEM) imaging. We characterized the loss on two homemade nitride and oxide films on 3-inch silicon wafers with 12 waveguide devices on each and correlated the scattering loss estimated from a 2D image-based sidewall profile and theoretical Payne model. The lowest loss of guided fundamental transverse electric (TE0) mode is found at 0.075 dB/cm at 633 nm across 24 devices, a record at visible wavelength. Our work shows 100% success (edge continuity span exceeding 95% of image width/height) in edge detection in image processing of all images to estimate autocorrelation function and optical mode loss. These demonstrations offer valuable insights into waveguide sidewall roughness and a comparison of experimental and 2D SEM image processing based loss estimations with applications in loss characterization at wafer-scale PICs. 
    more » « less
  2. Cavities in large-scale photonic integrated circuits (PICs) often suffer from a wider distribution of resonance frequencies due to fabrication errors. It is crucial to adjust the resonances of cavities using post-processing methods to minimize the frequency distribution. We have developed a concept of passive tuning by manipulating the mode index of a portion of a microring cavity, which we named mode index engineering (MIE). Through analytical studies and numerical experiments, we have found that depositing a thin film of dielectric material on top of the cavity or etching the material enables us to fine-tune the resonances and minimize the frequency distribution. This versatile method allows for the selective tuning of each cavity’s resonance in a large set of cavities in a post-fabrication step, providing robust passive tuning in large-scale PICs. We show that the proposed method achieves a tuning resolution below 1/Q and a range of up to 103/Q for visible to near-infrared wavelengths. Furthermore, this method can be applied and explored in various integrated photonic cavities and material configurations. 
    more » « less
  3. Subramania, Ganapathi S.; Foteinopoulou, Stavroula (Ed.)
  4. We present the design, fabrication and characterization of high quality factor silicon nitride nanobeam PhC cavities at visible wavelengths for coupling to diamond color centers in a cavity QED system. We demonstrate devices with a quality factor of ∼24, 000 (±250) around the zero-phonon line of the germanium-vacancy center in diamond. We also present an efficient fiber-to-waveguide coupling platform for suspended nanophotonics. By gently changing the corresponding effective indices at the fiber-waveguide interface, we achieve a coupling efficiency of ∼96% (±2%) at the cavity resonance. 
    more » « less
  5. null (Ed.)
  6. We report a facile synthetic approach to create stable radical block copolymers containing a secondary fluorinated block via anionic polymerization using a bulky, sterically hindered countercation composed of a sodium ion and di-benzo-18-crown-6 complex. The synthetic conditions described in this report allowed for controlled molecular weights and dispersity (<1.3) of both homopolymers: poly(2,2,6,6-tetramethyl-1-piperidinyloxy-methacrylate) (PTMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as well as their block copolymers (PTMA- b -PTFEMA). The stable radical concentration of the polymers was determined by electron spin resonance (ESR) and showed radical content above 70%. An analysis of the microphase morphologies in PTMA- b -PTFEMA thin films via atomic force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS) showed clear evidence of long-range ordering of lamellar and cylindrical morphologies with 32 and 36 nm spacing, respectively. The long-range ordering of the morphologies was developed with the aid of two separate neutral layers: PTMA- ran -PTFEMA- ran -poly(hydroxyl ethyl methacrylate) (PHEMA) and poly(isobutyl methacrylate) (PiBMA)- ran -PTFEMA- ran -PHEMA, which helped us corroborate, along with the Zisman method, the surface energy estimation of PTMA to be 30.1 mJ m −2 . 
    more » « less